基于稀疏贝叶斯方法的脉间捷变频ISAR成像技术研究
来源: 作者: 时间:2015-01-21
【摘要】传统捷变频成像方法具有高旁瓣、低分辨率的缺点。鉴于捷变频ISAR回波信号的稀疏性,该文基于原始数据的2维压缩感知方案,在贝叶斯原理框架下,用稀疏贝叶斯算法方差成分扩张压缩方法(ExCoV)实现捷变频ISAR像的重建。贝叶斯框架下的稀疏重构算法考虑了稀疏信号的先验信息以及测量过程中的加性噪声,因而能够更好地重建目标系数。作为一种新的稀疏贝叶斯算法,ExCoV不同于稀疏贝叶斯学习(SBL)算法中赋予所有的信号元素各自的方差分量参数,ExCoV方法仅仅赋予有重要意义的信号元素不同的方差分量,并拥有比SBL方法更少的参数,克服了SBL算法参数多时效性差的缺点。仿真结果表明,该方法能克服传统捷变频成像缺点,并能够实现低信噪比条件下的2维高精度成像。
【关键词】 ISAR 捷变频 压缩感知 稀疏贝叶斯学习算法 方差成分扩张压缩方法(ExCoV)
The Interpulse Frequency Agility ISAR Imaging Technology Based on Sparse Bayesian Method
Abstract: Traditional frequency agility ISAR imaging method suffers from high sidelobe and low resolution. To improve the resolution, by exploiting the sparsity of targets in the received echo, this paper uses the sparse Bayesian algorithm, namely Expansion-Compression Variance-component based method (ExCoV), to reconstruct the ISAR image from the original Compressed Sensing (CS) ISAR data. By taking into account of the prior information of the sparse signal and the additive noise encountered in the measurement process, the sparse recover algorithm under the Bayesian framework can reconstruct the scatter coefficient better than the traditional methods. Different from the Sparse Bayesian Learning (SBL) endowing variance-components to all elements, the ExCoV only endows variance-components to the significant signal elements. This leads to much less parameters and faster implementation of the ExCoV than the SBL. The simulation results indicate that it can conquer the problem brought by traditional methods and achieve high precision agility ISAR imaging under the low SNR.
Keywords: ISAR Frequency agility Comressed Sensing (CS) Sparse Bayesian Learning (SBL) algorithm Expansion-Compression Variance (ExCoV) component
本文下载地址链接:http://wenku.baidu.com/view/30ceb36052d380eb63946d12.html
----------------------------------------------------------------------------------------------------
论文发表《科技视界》,咨询QQ:1105665662
上一篇文章:对林业税费的经济学分析
下一篇文章:分布式全相参雷达相参性能分析